Supervisory authorities


Our partners


Home > EN > Members


by Quentin COULOMBIER - published on , updated on

Research Engineer - CNRS

Contact :
- Bâtiment IRCICA - Bureau 010
- Tel: +33(0)362 53 15 26

Research Topics

- Fiber preform synthesis by Outside Vapor Deposition
- Experimental designs

Current Research

Research Experience


2014 :

2013 :

  • Valentin, C., P. Calvet, et al. (2013). "Top-hat beam output of a single-mode microstructured optical fiber: Impact of core index depression." Optics Express 21(20): 23250-23260.
  • Granzow, N., M. A. Schmidt, et al. (2013). "Mid-infrared supercontinuum generation in As2S3-silica "nano-spike" step-index waveguide." Opt. Express 21(9): 10969-10977.
  • Lee, K., N. Granzow, et al. (2013). Mid-IR Frequency Combs From Coherent Supercontinuum Generation in Chalcogenide Nano-Spike Waveguides. CLEO: 2013, Optical Society of America.

2011 :

  • Duhant, M., W. Renard, et al. (2011). "Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2µm." Optics letters 36(15): 2859-2861.
  • Conseil, C., Q. Coulombier, et al. (2011). "Chalcogenide step index and microstructured single mode fibers." Journal of Non-Crystalline solids 357: 2480-2483.
  • Renversez, G., M. Duhant, et al. (2011). Nonlinear effects above 2µm in chalcogenide suspended core microstructured optical fibers: Modeling and experiments. Photonics Conference (PHO), 2011 IEEE.
  • Troles, J., Q. Coulombier, et al. (2011). Elaboration of Chalcogenide microstructured optical fibers for mid-infrared applications. International Workshop on Fiber Lasers, Sensors, and Materials. Erlangen, Germany.
  • Renversez, G., M. Duhant, et al. (2011). Nonlinear effects above 2 µm in chalcogenide suspended core microstructured optical fibers: modeling and experiments. 2011 Ieee Photonics Conference. New York, Ieee: 61-62.
  • Troles, J., L. Brilland, et al. (2011). Chalcogenide suspended-core fibers: manufacturing and nonlinear properties at 1. 55 μm. International Congress on Transparent Optical Networks ICTON. Stockholm, Sweden.

2010 :

  • Coulombier, Q., L. Brilland, et al. (2010). "Casting method for producing low-loss chalcogenide microstructured optical fibers." Optics Express 18(9): 9107-9112.
  • Coulombier, Q., M. Sergent, et al. (2010). "Sulfide-halide glasses with high nonlinear refractive index and low nonlinear absorption." Optical Materials 32(9): 1102-1106.
  • Troles, J., Q. Coulombier, et al. (2010). "Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm." Optics Express 18(25): 26647-26654.
  • Fedus, K., G. Boudebs, et al. (2010). "Nonlinear characterization of GeS2-Sb2S3-CsI glass system." Journal of Applied Physics 107(2): 023108-5.
  • Désévédavy, F., G. Renversez, et al. (2010). "Chalcogenide glass hollow core photonic crystal fibers." Optical Materials 32(11): 1532-1539.
  • Nguyen, D. M., S. D. Le, et al. (2010). "Demonstration of Nonlinear Effects in an Ultra-Highly Nonlinear AsSe Suspended-Core Chalcogenide Fiber." Photonics Technology Letters, IEEE 22(24): 1844-1846.
  • Troles, J., J. L. Adam, et al. (2010). Elaboration of Photonic Crystal Fibers for Telecom and Mid Infrared Wavelengths. International Conference on Transparent Optical Networks Munich, Germany.
  • Troles, J., L. Brilland, et al. (2010). Elaboration by casting method of low losses chalcogenide microstructured fibers for near and mid infrared applications. International Symposium on Non-Oxide and New Optical Glasses ISNOG. Shanghai.
  • Coulombier, Q., L. Brilland, et al. (2010). Fabrication of low losses chalcogenide photonic crystal fibers by molding process. Photonic West, San Francisco, California, USA, SPIE.
  • Adam, J., J. Troles, et al. (2010). Photonic crystal fibers based on chalcogenide glasses. WSOF, Oaxaca, SPIE.
  • Nguyen, M. D., S. D. Le, et al. (2010). Demonstration of a low loss and ultra highly nonlinear AsSe suspended core chalcogenide fiber. ECOC. Torino.
  • Mechin, D., L. Brilland, et al. (2010). "NEXT-GENERATION FIBERS: Chalcogenide photonic-crystal fibers expand nonlinear applications." Laser Focus World 46(5).

2009 :

  • Charpentier, F., J. Troles, et al. (2009). "CO2 Detection Using Microstructured Chalcogenide Fibers." Sensor Letters 7: 745-749.
  • Désévédavy, F., G. Renversez, et al. (2009). "Te-As-Se glass microstructured optical fiber for the middle infrared." Applied Optics 48(19): 3860-3865.
  • Troles, J., L. Brilland, et al. (2009). "Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization." Fiber and Integrated Optics 28(1): 11-26.
  • Charpentier, F., V. Nazabal, et al. (2009). Infrared optical sensor for CO2 detection. Proceedings of SPIE - The International Society for Optical Engineering.
  • Brilland, L., P. Houizot, et al. (2009). Recent progress on the realization of chalcogenides photonic crystal fibers (Invited Paper) Photonic West. San Jose, CA. [7212-14].
    -* Nguyen, T. N., T. Chartier, et al. (2009). "Ultra highly nonlinear AsSe chalcogenide holey fiber for nonlinear applications." European Conference on Optical Communication.

2008 :

  • Coulombier, Q., S. Zhang, et al. (2008). "Planar waveguide obtained by burying a Ge22As20Se58 fiber in As2S3 glass." Applied Optics 47(31): 5750-5752.
  • Désévédavy, F., G. Renversez, et al. (2008). "Small-core chalcogenide microstructured fibers for the infrared." Applied Optics 47(32): 6014-6021.
  • Brilland, L., J. Troles, et al. (2008). "Interfaces impact on the transmission of chalcogenides photonic crystal fibres." Journal of the Ceramic Society of Japan 116(1358): 1024-1027.
  • Brilland, L., P. Houizot, et al. (2008). Improvement of the transmission of chalcogenide photonic crystal fibres: Observation of self phase modulation spectral broadening. European Conference on Optical Communication.
  • Coulombier, Q., J. Troles, et al. (2008). "Fibres microstructurées en verres de chalcogénures." Bulletin Poloq 2.

2007 :

  • Wilhelm, A. A., C. Boussard-Plédel, et al. (2007). "Development of Far-Infrared-Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics." Advanced Materials 19(22): 3796-3800.